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Abstract

Using a ‘reasonable’ measure in ?/”(2/’1’), the space of 2-homogeneous polynomials on /7, we
show the existence of a set of positive (and independent of 7) measure of polynomials which do
not attain their norm at the vertices of the unit ball of /. Next we prove that, when n grows,
almost every polynomial attains its norm in a face of ‘low’ dimension.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction, notation and definitions

In the past few years there has been an increasing interest, within the theory of
polynomials in Banach spaces, in the study of the geometry of the spaces of
polynomials (see, for instance, [1,3-7]).

In this direction, in the conference ‘Function Theory on Infinite Dimensional
Spaces VII’, held in Madrid in 2001, Professor Zalduendo asked the question of “how
many’ homogeneous polynomials will attain their norm at the vertices of the unit
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ball of /7, when n tends to infinity. He conjectured that ‘almost everyone’. In this
direction, he and Carando published recently a paper giving qualitative general
results (see [2]). As they say in the introduction, the question is to study how likely it
is for a polynomial P : E— R to attain its norm at a given subset 4 of the unit ball
Bg. In our paper, we give quantitative results referring to 2-homogeneous
polynomials on /], as an example of the results that can be expected in more
general cases. We use normalized Lebesgue’s measure y,, on the unit ball of the space
Z(2/7) of symmetric bilinear forms to count ‘how many’ polynomials attain their
norm wherever. The reason for using this measure, instead of normalized Lebesgue’s
measure on the polynomial unit ball is that it is (by far) easier to deal with. On the
other hand, it is also a reasonable measure since, by the polarization formula, for
every 2-homogeneous polynomial P on /7, we have that || P||<||4|| <2||P||, where 4
is the associated symmetric bilinear form.

The first result we have is that Zalduendo’s conjecture fails in this setting (see
Theorem 3). This is not so surprising since the number of vertices in the unit ball of

| is just 2n, whereas in the unit ball of /” there are 2" vertices. The main result
(Theorem 4), however, shows that even in this case Zalduendo’s conjecture is not far
from the truth, in the sense that, asymptotically, almost every polynomial attains its
norm in a face of ‘low’ dimension.

The notation will be the usual in this context. £ will denote a finite-dimensional
Banach space. Associated to it, we are going to consider its unit ball Bg, the space of
real-valued 2-homogeneous polynomials 2(*E), and the space of real-valued
symmetric bilinear forms #(*>E). Given a polynomial P, we are going to write A
for the unique symmetric associated bilinear form. We are going to consider only

polynomials P such that A€ By (2p). /] will be the Banach space (R", | - [|), 7%, will
be (R",||-|.,) and {e;};_, will denote the canonical basis of R".
n(n+1)

We identify £ (*/7) with /.2 via the isometry A (4(e;,¢;) = a;)| ;- With
this, denoting the natural identification of 2-homogenecous polynomials and the
corresponding symmetric bilinear forms as F : P— A, for any measurable subset
S <P (3} one defines

where 44 is the usual Lebesgue measure in RY.

For a general definition of a vertex and an m-dimensional face of a convex
polytope, we refer the reader to [8]. Here all we are going to use is that [8, pp. 55-56]
in By, the vertices are just +e;, i=1,...,n, and an (m — 1)-dimensional face
(or (m —1)-face) is just the convex hull of m linearly independent vertices.
The interior of an m-face C is the set of points of C that are not in any k-face,
for k<m.

Though we are not going to say it from now on, it is not difficult to show that all
the sets we are going to consider are measurable.
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2. The results

Lemma 1. Let E be a normed vector space, let Pe ?(*E) and let T e ¥ s(*E) be its
associated symmetric bilinear form. Suppose x,y € E and suppose |P(x)|=|P(y)|.

(1) If |P(x)|=|T(x,y)| then, for every 0<i<l, we have that |P(Ax+ (1 —1)y)|
<|P(x)|.

(il) Conversely, if |T(x,y)|>|P(x)| and P(x) and T(x,y) have the same sign, then
there exists 1€ (0, 1) such that |P(2x + (1 — A)y)|>|P(x)|.

Proof. Let us suppose first that |P(x)|>|T(x,y)|. Then, for every 1€(0, 1),
(PG + (1= 2)y)] = [2P(x) + (1 = 2 P() +22(1 = DT (x.)|
< V2P| + (1= 2P| + [24(1 = ) T(x,)
< |P(x)l,

because A% + (1 — 4)* +24(1 — ) = 1.
Conversely, suppose that T'(x,y)> P(x) >0 (the other case is similar). Let

FO) = PUx+ (1 = A)y) = 22P(x) + (1 = 2)*P(y) + 24(1 — )T (x,).
Then

J1(2) =200P(x) + (A= 1)P(y) + (1 = 24)T(x, )
and /(1) = 0 only when

G POV -T(xy)
P(x) + P(y) = 2T (x,y)
Clearly 0<io<1 and, since f”(1) =2(P(x)+ P(y) —2T(x,y))<0, we get that
S (o) = P(Aox + (1 — Z9)y) > P(x). Moreover, we get that
) —

POPE -T(x )
P(x) + P() — 2T(x,))

f () =

As an application of the first part of the lemma, we have the following:

Proposition 2. Let PeP(*/}), let Ae L(*(}) be its associated symmetric bilinear
SJorm and let ie{1, ... ,n} be such that |P(e;)| >|P(e;)| for every je{l, ...,n}. Suppose
that, for every je{l, ...,n}, |P(e;)|>|A(ei, ¢;)|. Then P attains its norm either at e; or
at one of the (n — 2)-dimensional faces not adjacent to e; or —e;.

Proof. Let us suppose without loss of generality that i =1. A point y in one of
the non-adjacent (n — 2)-dimensional faces can always be written in the form
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Y =Y, where Y77 »|a| = 1. Let us note that

Z ajA(er,e;)
=2

So, consider any point z in the unit ball of /]. There exists y in one of the (n — 2)-
dimensional faces not adjacent to e; or —e; and 1€[0, 1] such that z = Je; + (1 — 4)y.
If |P(e))|=|P(y)|, we can use Lemma 1(i) to prove that |P(z)|<|P(er)]. If
|P(e1)| < |P(y)| we use again Lemma 1(i) to prove that |P(z)|<|P(y)|. O

Aler,y)| =

n
<D lollA(er )l <[Plen)]-
=2

We can also use the second part of Lemma 1 to prove the next theorem.

Theorem 3 (Failure of Zalduendo’s conjecture for /7). For any n=2, if we denote
C = {PeP(*/}) such that ||A||<1 and P does not attain its norm at a vertex}, then

1, (C) =5
Proof. We define the following sets:

C . max;|P(e;)| = |P(ej,)|
B := < P such that there exist iy, jo with ,

|P €y |<|A elo’ejo)‘

max;|P(e;)| = |P(ej,)]

B = { P such that there exist iy, o with |P(e,)| <|A(ei €5)] ,
sign P(e;,) #sign A(ej,, €j,)
B = { P such that there exist iy, jo with |P(e;,)| <|A(eis,€5)]

sign P(e;,) = sign A(e;,, ¢j,)

n n+
Let us consider the linear isometry /. 2 —>/ -

{ max;|P(e;)| = |P(e;,)]
+
2

given by (a,/)j>l (@;);>» where
a; = —ay if j>i and d; = a;;. Clearly the image of Bis just B. Using the change of

variables theorem, we obtain that u,(B) = u,(B). Besides, B = BuU B and, by Lemma
1(ii), B< C. Therefore

14, (B)
>

Now, using the usual identification P« (4(e;, ¢;) = ay);,;, we have that

1, (C) =

n

‘o U{|akk| = max \a,,| and |ax| = max akj|},
P 1< I1<j<n
where we take ay; = ay, if k>j.

For each k=1,...,n, the measure of the set {|aw|= max;a;| and
lake| = max;|aij|} can be calculated easily by integration to be 2,1]—71 Therefore
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we have that

(B) 1=, (B) 1-55 n—-1_1
> = > = >,
(€)== 2 2 m—-2"6

for every n=2. O

This result shows the existence of a set of positive measure of polynomials
which do not attain their norm at the vertices. We are reasonably sure of the
existence of another set of positive (and independent of n) measure of polynomials
which do attain their norm at the vertices, but we have not been able to prove
this yet.

Indeed, it seems to be the case that ‘most’ of the polynomials Pe2(>/}) attain
their norm in the low-dimensional faces. This is the content of our next (and main)
theorem.

Theorem 4. Let S” be the set of polynomials Pe?(*(}) such that ||A||<1 and P
attains its norm in the interior of an (m — 1)-face. Then

lim w,{ J Sp)=0. (1)
e m>16/n

The idea behind the proof of Theorem 4 is to find sets B such that S = B?, each
B is ‘easy’ to measure, and condition (1) still holds for B!'. To do this we need some
preliminary results.

Proposition 5. If P is a polynomial that attains its maximum in the interior of the
(m — 1)-face C given by the vertices vy, ..., vn, and if P(v1) <P(v2)< - < P(vy), then

P(UI)SA(Ulavj) v]>17
P(vy) <A(v2,v;) Vj>2,

P(Um—l) <A(Um—l ) Um)-

Proof. The interior of C is given by
int(C) = {41+ - + dma1Vm—1 + (1 =241 — -+ = A1) Um,

where
m—1
2;€(0,1) (1<i<m—1) and Z}.,«<l}.
i=1

We call D = {(1, ..., 2m-1)€(0,1)"" - 5" ' 2, <1} and we define f : D—R by
f(llv ~~7}vm—l) = P(/l]l]] + - +/1m—lvm—l + (1 - )vl - = /lm—l)vm)-
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We have that f is the polynomial of degree 2 given by

m—1 m—1 m—1 m—1
Sy o) =Y A P(v) <1+Z 2 Y ;,A]—zzz,> Om)

i=1 l1=i<j
m—1 m—1
+2 Z AidjA(vi, ;) +2 Z 2iA (Vi Um)
l=i<j i=1
— m—1
-2 Z A vm) =2 2idiA(vi, vm).
i=1 i#j

As f attains its maximum in D, we have that the Hessian matrix H = (Hj); ;. A

of f, which is constant, is negative semidefinite. Then, considering u; = e¢; — ¢; for
i<j, we have that

%(Hii + H; —2Hy) = %u;HuUSO.
Now,

%Hﬁ :P(Ui) + P(Um) - ZA(UI',U,H),

%I_Ijj :P(Uj) + P(Um) - 2A(Uja Um)a

%Hij = P(vm) + A(vi,v;) — A(vivm) — A(vj, vm)
and so
P(v;) + P(vj) <2A(vi, vy) (2)

holds for 1<i<j<m — 1.

As, in addition, P(v;) + P(vy) — 24 (vi,vm) = %H,-i<0 for 1<i<m —1, we have
that (2) holds for l<i<j<m. Using the condition P(v;)<---<P(v,) it is
straightforward to conclude the result. [

The following two lemmas can be easily proved by induction.

Lemma 6. If n>=1, we have that

( ))1(11+1)
1 —x, 2
/ / H 17X])/ dX() dxn 1 —m
Xp—1=Xp X0=X1 = Hk:1 2
Lemma 7.
Hm k(k+1)  (m+1)?
=2 2 (mt )

We can use now these lemmas and Proposition 5 to prove
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Proposition 8.

n\~2m+1
i (s <2
(m+ 1))

Proof. Given an (m — 1)-face C, we will call M¢ (resp. N¢) the set of polynomials
Pe2(*/}) with ||4]|<1 such that P attains its maximum (resp. minimum) in the
interior of C. It is trivial that pu,(M¢) = p,(N¢).

Let us call Cy the (m — 1)-face given by ey, ...,e,. It is not difficult to see that,

nntl)  n(ntl)

given any other (m — 1)-face, say C, there exists a linear isometry 7 : £ .2 —/ >
(with |det(T)| = 1) that maps M¢ onto M¢,. Using the change of variables theorem,
it follows that

:un(NC) = :un(MC) = :un(MCo)'

We also know [8, p. 56] that there are (;,)2" different (m — 1)-faces in B/». Therefore,
we have that

(1)< S (M) + (Ve = ()27 () ®)
C

Now, if we make the convention a; = aj; if i>j and define, for each permutation
o:{1,...,m}—>{1,....m}, the set B, by

B, = {A = (a,j) such that ||A|| < 1, Ag(1),6(1) <--- <a,,(m),,,(m> and

As(1),6(1) Sg(1),6(2)5 -+ Ao(1),0(m)
A5(2),6(2) SU5(2),6(3)5 -+ 1 Ao(2),0(m)

As(m—1),6(m—1) <aa'(m—l),a'(m)

we get, using Proposition 5, that M¢, < |J, B.
But we have as above that p,(B,;) = u,(Bis) for every . Moreover, we have that
m(m-H)

2 w,(Big) is just

m—1
m —Jj
/ / / H 1 — ajj damm da22 da“. (4)
an=ai| Apm=Am—-1,m-1 j=]

Now, by Lemma 6, (4) is equal to

1 m(m+1) 1

1 m(mfl)jL 1

I — _ 2 m= = 2 -
m—lk(k+l)/ (1 a“) day 2 m k(k+1)
k=1 =2 /-1 k=1

and by Lemma 7,
2"(m+1)

1y (Bia) = mane
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So

2}71

ﬂn(MCo)gm!:un(Bid) = m

and an appeal to (3) finishes the proof. [

Finally, we need a technical result.

Proposition 9. There exists a natural number ny such that, for every n=ny, we have

Proof. The proof lies in the following two claims:

Claim 1. There exists a natural number ny such that, for every n=ngy, we have that

(gi)zmn 1
(8n)! “n¥

Claim 2. If Sn<m<n®> — 1 and we call

()22

Xm = |
m:

)

we have that X, = X, 1-
With these two claims, if n>n, then

2

n n )216n 2 1

I‘i‘l>22m
S e S e

m=8n m=8n

and we are done.
In order to prove the first claim we call

(g:jl)zlenn3
Yn =" o7 -
(8n)!
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We will see that lim,,_, ., y, = 0. We have
Yn+l1
Yn
216<1+1>3 (n2 4+ 1+2n)--- (2 +1)
(8n+8)%--(8n+ 1)’ (> +1—6n—8)--- (1> —8n+1)
_(1—|—l/n) (n* +1+2n)---(n* +2n — 6) R +2n—7)--(R* +1)

232 (8nt8)2... (Butly? (m*+1—6n—8)--(n>—8n+1)

8 8
<(1+%)3 (R +1+2n)---(n* +2n — n2+2n_7>2118_B

6)
I (BriB)?... (Bntl)?2 (n2 —8n+1

It is easy to see that lim,_. B, = e—2<% Therefore, by the quotient criterium,
lim,,, o, y, = 0.
To see the second claim, we are going to prove that M<1

We have that >z = 4<("+1’)”> But 2 ( 7 " <1 if and only if m>1+v4n2 — 1. As

8n=1+ v4n* — 1, we can conclude the result. O

Finally, we can give the proof of Theorem 4.

Proof. We have that

(n)22m+1
I U Sy < Z 1 (S))) < Z m
m>16y/n m>16y/n m>16y/n :

n (;1)22;11 (Va+1y? (([\/ﬂ+1)2)22m

< E m ' < E m ' )
m m:

m=16[\/7] ’ m=8([/n]+1)

where [] denotes integer part.
Therefore, by Proposition 9, there exists a natural number 7y such that

1
ol U st}
m>16y/n ﬂ—’_l

for every n>=ng, and we are done. [
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